Topic Modelling with BERTopic and DataMapPlot
Topic modelling is a form of text analysis that uses unsupervised machine learning to identify patterns, themes, clusters, and groups across a collection of documents. In this article I discuss using the powerful BERTopic library alongside quantized large language models to identify themes and topics from a collection of research papers at the intersection of artificial intelligence and ophthalmology. Then, we'll use the DataMapPlot library to produce a publication ready visualization of the thematic structure contained within the abstracts of those research papers.